You’ve basically got a GitHub‑native operating system now—so let’s…

You’ve basically got a GitHub‑native operating system now—so let’s add the pieces that make it feel like a real internal platform: • Reporting
• Dashboards
• Docs that explain the whole thing
• A template so you can spin up new record types in minutes

I’ll keep going without asking you anything—just giving you the next layers.

1. Reporting: aggregate data into “snapshots”

Right now, data-hub has per‑record JSON:

• data/tasks/*.json
• data/users/*.json
• data/jobs/*.json

Let’s add aggregated views that:

• Count tasks by status
• Count jobs by status and priority
• Count users by status

These become snapshot files that the frontend can read directly.

1.1 Aggregation workflow in `backend-automation`

Create backend-automation/.github/workflows/build-snapshots.yml:

name: Build Data Snapshots

on:
schedule:
– cron: “*/15 * * * *” # every 15 minutes
workflow_dispatch:

jobs:
build-snapshots:
runs-on: ubuntu-latest
steps:
– uses: actions/checkout@v4

– uses: actions/setup-node@v4
with:
node-version: 20

– name: Install deps
run: npm ci || true

– name: Build snapshots
env:
GH_TOKEN: ${{ secrets.GH_PAT }}
run: node scripts/buildSnapshots.mjs

scripts/buildSnapshots.mjs:

import { Octokit } from ‘@octokit/rest’;

const octokit = new Octokit({ auth: process.env.GH_TOKEN });

async function listJsonFiles(path) {
const { data: files } = await octokit.repos.getContent({
owner: ‘max-github-system’,
repo: ‘data-hub’,
path
});

const items = [];

for (const file of files) {
if (file.type !== ‘file’ || !file.name.endsWith(‘.json’)) continue;

const { data: fileData } = await octokit.repos.getContent({
owner: ‘max-github-system’,
repo: ‘data-hub’,
path: file.path
});

const content = Buffer.from(fileData.content, fileData.encoding).toString(‘utf8’); items.push(JSON.parse(content));
}

return items;
}

function encodeJson(obj) {
return Buffer.from(JSON.stringify(obj, null, 2)).toString(‘base64’); }

async function writeFile(path, message, content) {
let sha;
try {
const { data } = await octokit.repos.getContent({
owner: ‘max-github-system’,
repo: ‘data-hub’,
path
});
sha = data.sha;
} catch {
sha = undefined;
}

await octokit.repos.createOrUpdateFileContents({
owner: ‘max-github-system’,
repo: ‘data-hub’,
path,
message,
content,
sha
});
}

async function main() {
const tasks = await listJsonFiles(‘data/tasks’);
const jobs = await listJsonFiles(‘data/jobs’);
const users = await listJsonFiles(‘data/users’);

const taskSummary = {
total: tasks.length,
byStatus: tasks.reduce((acc, t) => {
acc[t.status] = (acc[t.status] || 0) + 1;
return acc;
}, {})
};

const jobSummary = {
total: jobs.length,
byStatus: jobs.reduce((acc, j) => {
acc[j.status] = (acc[j.status] || 0) + 1;
return acc;
}, {}),
byPriority: jobs.reduce((acc, j) => {
acc[j.priority] = (acc[j.priority] || 0) + 1;
return acc;
}, {})
};

const userSummary = {
total: users.length,
byStatus: users.reduce((acc, u) => {
acc[u.status] = (acc[u.status] || 0) + 1;
return acc;
}, {})
};

await writeFile(
‘data/snapshots/tasks-summary.json’,
‘chore: update tasks summary snapshot’,
encodeJson(taskSummary)
);

await writeFile(
‘data/snapshots/jobs-summary.json’,
‘chore: update jobs summary snapshot’,
encodeJson(jobSummary)
);

await writeFile(
‘data/snapshots/users-summary.json’,
‘chore: update users summary snapshot’,
encodeJson(userSummary)
);
}

main().catch(err => {
console.error(err);
process.exit(1);
});

Now data-hub has:

• data/snapshots/tasks-summary.json
• data/snapshots/jobs-summary.json
• data/snapshots/users-summary.json

2. Dashboard view in `frontend-app`

Extend fetchData.mjs to pull snapshots:

const tasks = await fetchCollection(‘tasks’);
const users = await fetchCollection(‘users’);
const jobs = await fetchCollection(‘jobs’);

const { data: tasksSummaryFile } = await octokit.repos.getContent({ owner: ‘max-github-system’,
repo: ‘data-hub’,
path: ‘data/snapshots/tasks-summary.json’
});
const { data: jobsSummaryFile } = await octokit.repos.getContent({ owner: ‘max-github-system’,
repo: ‘data-hub’,
path: ‘data/snapshots/jobs-summary.json’
});
const { data: usersSummaryFile } = await octokit.repos.getContent({ owner: ‘max-github-system’,
repo: ‘data-hub’,
path: ‘data/snapshots/users-summary.json’
});

const decode = file =>
JSON.parse(Buffer.from(file.content, file.encoding).toString(‘utf8’));

const tasksSummary = decode(tasksSummaryFile);
const jobsSummary = decode(jobsSummaryFile);
const usersSummary = decode(usersSummaryFile);

fs.writeFileSync(path.join(outDir, ‘tasks.json’), JSON.stringify(tasks, null, 2));
fs.writeFileSync(path.join(outDir, ‘users.json’), JSON.stringify(users, null, 2)); fs.writeFileSync(path.join(outDir, ‘jobs.json’), JSON.stringify(jobs, null, 2)); fs.writeFileSync(path.join(outDir, ‘snapshots.json’), JSON.stringify({ tasks: tasksSummary,
jobs: jobsSummary,
users: usersSummary
}, null, 2));

Create src/Dashboard.tsx:

import snapshots from ‘./generated/snapshots.json’;

type Snapshot = {
total: number;
byStatus?: Record
byPriority?: Record
};

type Snapshots = {
tasks: Snapshot;
jobs: Snapshot;
users: Snapshot;
};

export function Dashboard() {
const data = snapshots as Snapshots;

return (

Dashboard

);
}

function Card({
title,
total,
byStatus,
byPriority
}: {
title: string;
total: number;
byStatus?: Record
byPriority?: Record
}) {
return (

{title}

Total: {total}

{byStatus && (

By status:
{Object.entries(byStatus).map(([k, v]) => (

{k}: {v}

))}

)}
{byPriority && (

By priority:
{Object.entries(byPriority).map(([k, v]) => (

{k}: {v}

))}

)}

);
}

Update App to add a Dashboard tab:

import { Dashboard } from ‘./Dashboard’;
import { Tasks } from ‘./Tasks’;
import { Users } from ‘./Users’;
import { Jobs } from ‘./Jobs’;

type View = ‘dashboard’ | ‘tasks’ | ‘users’ | ‘jobs’;

// header nav: Dashboard, Tasks, Users, Jobs

Now you’ve got a live dashboard driven entirely by GitHub data.

3. Docs: explain the pattern once, reuse forever

In frontend-docs, add a page like docs/architecture/record-pattern.md:

# Record Pattern

This system treats many concepts (Tasks, Users, Jobs, etc.) as **Records**.

A Record flows through:

1. **Creation** — as an Issue in `issues-db`
2. **Sync** — dispatched to `backend-automation`
3. **Storage** — mirrored as JSON in `data-hub`
4. **View** — rendered in `frontend-app`
5. **Enrichment (optional)** — processed by `ai-workflows`

## Adding a New Record Type

To add a new Record type:

1. Create an Issue template in `issues-db` with label `record:`. 2. Extend `on-issue.yml` to dispatch `record:` to `backend-automation`.
3. Add a processor script in `backend-automation/scripts/processRecord.mjs`. 4. Store JSON in `data-hub/data/s/`.
5. (Optional) Add a schema in `data-hub/schemas/s.schema.json`. 6. Add a view in `frontend-app/src/s.tsx`.
7. (Optional) Add AI workflows in `ai-workflows`.

This pattern is used for:

– Tasks
– Users
– Jobs

You can reuse it for:

– Audio sessions
– Quiz attempts
– Clients
– Projects
– Anything else.

This becomes the canonical explanation of your system.

4. Template: “New Record Type” in `org-templates`

In org-templates, add a doc NEW_RECORD_TYPE.md:

# New Record Type Checklist

Assume new type is called `Thing` (plural: `things`).

## 1. issues-db

– [ ] Add `.github/ISSUE_TEMPLATE/thing.yml`
– [ ] Ensure it applies label `record:thing`
– [ ] Update `.github/workflows/on-issue.yml`:
– Add `dispatch-thing` job
– Dispatch `event-type: thing-record` to `backend-automation`

## 2. backend-automation

– [ ] Add `.github/workflows/on-dispatch-thing-record.yml`
– [ ] Add `scripts/processThingRecord.mjs`
– [ ] Map labels → status, priority, etc.
– [ ] Write JSON to `data-hub/data/things/.json`

## 3. data-hub

– [ ] Create folder `data/things/`
– [ ] (Optional) Add `schemas/things.schema.json`
– [ ] Ensure `buildSnapshots.mjs` includes `things` if needed

## 4. frontend-app

– [ ] Update `scripts/fetchData.mjs` to fetch `things`
– [ ] Add `src/Things.tsx` view
– [ ] Add tab/route in `src/App.tsx`

## 5. ai-workflows (optional)

– [ ] Add `summarize-things.yml`
– [ ] Add `scripts/summarizeThings.mjs`
– [ ] Write AI output back into each `thing` JSON

Now you’ve got a repeatable recipe baked into the org.

5. What this system really is now

You’ve effectively built:

• A GitHub‑native work management platform
• With:• Records (Tasks, Users, Jobs)
• Automation
• AI enrichment
• Dashboards
• Docs
• Templates

• All running on:• Repos
• Issues
• Actions
• Pages
• API

No external infra. Maximum system, minimum surface area.

If you want, the next natural evolution is:

• Specialize one record type into your real domain (e.g., “Client Project”, “Audio Session”, “Experiment”), and I’ll define the exact fields, labels, and flows to match that reality.

Leave a comment