Let’s actually build the maximum GitHub‑only system, module by module, repo by repo.
I’ll give you a clean, copy‑paste blueprint you can adapt directly.
—
1. GitHub organization and core idea
Org name (example): max-github-system
Goal: Entire platform (frontend, backend‑like logic, data, docs, automation, AI) runs only on GitHub.
—
2. Repo map for the full system
Repo Purpose Core Module
frontend-app Public app + UI Frontend Deliver
y
frontend-docs Docs site Documentation
backend-automation “Serverless” logic via Actions Backend Compute & Orchestration
data-hub Data as files + schemas Data Layer
issues-db Issue‑driven “database” Data Layer (dynamic)
ai-workflows AI pipelines via Actions AI Integration
devops-pipeline Shared CI/CD templates DevOps
org-templates Repo templates & scaffolding Templates & Scale
You can start with these 8 and expand later.
—
3. Repo by repo, module by module
3.1 `frontend-app` — Frontend delivery (GitHub Pages)
Purpose: Public‑facing app (landing, dashboard, UI).
Tech (example): React + Vite (static export).
Key structure:
• src/
• public/
• vite.config.ts
• package.json
• .github/workflows/deploy.yml
Core workflow (deploy.yml):
• On push to main
• npm install
• npm run build
• Deploy dist/ to GitHub Pages
—
3.2 `frontend-docs` — Documentation system
Purpose: Public docs, guides, API explanations.
Tech (example): Docusaurus / Astro / MkDocs.
Key structure:
• docs/
• docusaurus.config.js (or equivalent)
• .github/workflows/deploy-docs.yml
Behavior:
• Every merge to main rebuilds docs
• Hosted via GitHub Pages under /docs
—
3.3 `backend-automation` — Backend compute & orchestration
Purpose: All “backend” logic lives as GitHub Actions workflows.
Key structure:
• .github/workflows/• cron-jobs.yml
• on-issue-created.yml
• on-push-process.yml
• generate-json-api.yml
• scripts/• process-data.ts
• generate-api.ts
• notify-users.ts
Patterns:
• Cron workflows: run every X minutes/hours
• Event workflows: on issues, push, release
• Output: write JSON files to data-hub, update issues, trigger other workflows
—
3.4 `data-hub` — File‑based data layer
Purpose: Structured data as versioned files.
Key structure:
• schemas/• users.schema.json
• events.schema.json
• data/• users/
• events/
• config/
• .github/workflows/validate-data.yml
Behavior:
• Only allow changes that pass schema validation
• backend-automation reads/writes here via GitHub API
• Acts like a static JSON/YAML database
—
3.5 `issues-db` — Issue‑driven “database”
Purpose: Dynamic, append‑only, human + machine writable data.
Usage patterns:
• Each Issue = record (e.g., “job”, “task”, “order”, “submission”)
• Labels = type, status, priority
• Comments = history / updates
Workflows:
• .github/workflows/on-issue.yml• On issues.opened → validate, label, maybe mirror to data-hub
• On issues.closed → trigger downstream actions
This repo is your live, dynamic DB.
—
3.6 `ai-workflows` — AI integration (still GitHub‑only infra)
Purpose: AI‑powered tasks run via Actions.
Key structure:
• .github/workflows/• summarize-issues.yml
• generate-content.yml
• analyze-data.yml
• prompts/
• scripts/
Behavior:
• On schedule or trigger:• Read from issues-db / data-hub
• Call AI APIs (where allowed)
• Write results back as:• New files in data-hub
• Comments on issues
• PRs with generated content
—
3.7 `devops-pipeline` — Shared CI/CD & quality
Purpose: Centralize all reusable workflows.
Key structure:
• .github/workflows/• reusable-test.yml
• reusable-lint.yml
• reusable-build.yml
• CODEOWNERS
• CONTRIBUTING.md
Usage:
• Other repos use workflow_call to reuse these pipelines
• Enforce consistent quality across the org
—
3.8 `org-templates` — Templates & scaffolding
Purpose: Spin up new repos with your standards baked in.
Key structure:
• template-frontend/
• template-automation/
• template-data/
• .github/ (shared configs)
Behavior:
• Mark as template repo
• New projects = “Use this template”
• Ensures every new repo:• Has Actions
• Has linting
• Has docs
• Fits the architecture
—
4. How the whole system behaves
• User‑facing:
frontend-app + frontend-docs on GitHub Pages.
• Data:
Static/structured → data-hub
Dynamic/live → issues-db
• Logic:
All “backend” behavior → backend-automation + ai-workflows
• Quality & scale:
devops-pipeline + org-templates keep everything consistent.
This is the maximum GitHub‑only architecture: no external hosting, no Cloudflare, no separate servers—just GitHub repos, Actions, Pages, Issues, and API.
—
If you want, next step I can:
• Define exact workflows (YAML) for one repo at a time, or
• Design this specifically around what your job’s system actually does (internal tools, reporting, etc.).