Got it. I’ll just build the whole thing out—repo by repo, workflow by workflow—so you can copy, adapt, and run.
1. `frontend-app` — Public app on GitHub Pages
Goal: Production‑grade static app (React example) auto‑deployed from main.
Structure:
• package.json
• vite.config.ts
• src/
• public/
• .github/workflows/deploy.yml
package.json (core):
{
“name”: “frontend-app”,
“version”: “1.0.0”,
“scripts”: {
“dev”: “vite”,
“build”: “vite build”,
“preview”: “vite preview”
},
“dependencies”: {
“react”: “^18.0.0”,
“react-dom”: “^18.0.0”
},
“devDependencies”: {
“vite”: “^5.0.0”
}
}
deploy.yml:
name: Deploy Frontend to GitHub Pages
on:
push:
branches: [ main ]
permissions:
contents: read
pages: write
id-token: write
jobs:
build-and-deploy:
runs-on: ubuntu-latest
steps:
– name: Checkout
uses: actions/checkout@v4
– name: Setup Node
uses: actions/setup-node@v4
with:
node-version: 20
– name: Install deps
run: npm ci
– name: Build
run: npm run build
– name: Upload artifact
uses: actions/upload-pages-artifact@v3
with:
path: dist
– name: Deploy
uses: actions/deploy-pages@v4
—
2. `frontend-docs` — Docs site on GitHub Pages
Goal: Dedicated docs site, auto‑built on main.
Structure (Docusaurus example):
• docusaurus.config.js
• docs/
• sidebars.js
• package.json
• .github/workflows/deploy-docs.yml
deploy-docs.yml:
name: Deploy Docs
on:
push:
branches: [ main ]
permissions:
contents: read
pages: write
id-token: write
jobs:
build-and-deploy:
runs-on: ubuntu-latest
steps:
– uses: actions/checkout@v4
– uses: actions/setup-node@v4
with:
node-version: 20
– name: Install deps
run: npm ci
– name: Build docs
run: npm run build
– name: Upload artifact
uses: actions/upload-pages-artifact@v3
with:
path: build
– name: Deploy
uses: actions/deploy-pages@v4
—
3. `data-hub` — File‑based data layer
Goal: Structured JSON/YAML data with schema validation.
Structure:
• schemas/• users.schema.json
• events.schema.json
• data/• users/
• events/
• config/
• .github/workflows/validate-data.yml
Example users.schema.json:
{
“$schema”: “http://json-schema.org/draft-07/schema#“,
“type”: “object”,
“required”: [“id”, “email”, “createdAt”],
“properties”: {
“id”: { “type”: “string” },
“email”: { “type”: “string”, “format”: “email” },
“createdAt”: { “type”: “string”, “format”: “date-time” },
“meta”: { “type”: “object” }
},
“additionalProperties”: false
}
validate-data.yml:
name: Validate Data
on:
pull_request:
paths:
– “data/**.json”
– “schemas/**.json”
jobs:
validate:
runs-on: ubuntu-latest
steps:
– uses: actions/checkout@v4
– name: Setup Node
uses: actions/setup-node@v4
with:
node-version: 20
– name: Install ajv
run: npm install ajv ajv-cli
– name: Validate users
run: npx ajv validate -s schemas/users.schema.json -d “data/users/*.json” –errors=text || exit 1
—
4. `issues-db` — Issue‑driven “database”
Goal: Dynamic records stored as Issues, processed by Actions.
Conventions:
• Label type:user, type:job, type:task, etc.
• Title = primary key or human label.
• Body = structured markdown or JSON block.
on-issue.yml:
name: Process Issues as Records
on:
issues:
types: [opened, edited, closed]
jobs:
handle-issue:
runs-on: ubuntu-latest
steps:
– name: Checkout
uses: actions/checkout@v4
– name: Extract payload
id: payload
run: |
echo “ISSUE_TITLE=${{ github.event.issue.title }}” >> $GITHUB_OUTPUT echo “ISSUE_BODY<> $GITHUB_OUTPUT
echo “${{ github.event.issue.body }}” >> $GITHUB_OUTPUT
echo “EOF” >> $GITHUB_OUTPUT
– name: Call backend-automation
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.GH_PAT }}
repository: max-github-system/backend-automation
event-type: issue-record
client-payload: |
{
“number”: ${{ github.event.issue.number }},
“action”: “${{ github.event.action }}”,
“title”: “${{ steps.payload.outputs.ISSUE_TITLE }}”
}
—
5. `backend-automation` — “Serverless” logic
Goal: Central brain for processing events, generating files, orchestrating repos.
Structure:
• .github/workflows/• on-dispatch-issue-record.yml
• cron-maintenance.yml
• generate-json-api.yml
• scripts/• processIssueRecord.mjs
• buildApi.mjs
on-dispatch-issue-record.yml:
name: Handle Issue Records
on:
repository_dispatch:
types: [issue-record]
jobs:
process:
runs-on: ubuntu-latest
steps:
– uses: actions/checkout@v4
– uses: actions/setup-node@v4
with:
node-version: 20
– name: Install deps
run: npm ci || true
– name: Process record
env:
PAYLOAD: ${{ toJson(github.event.client_payload) }}
GH_TOKEN: ${{ secrets.GH_PAT }}
run: node scripts/processIssueRecord.mjs
processIssueRecord.mjs (conceptual):
import fs from ‘fs’;
import path from ‘path’;
import { Octokit } from ‘@octokit/rest’;
const payload = JSON.parse(process.env.PAYLOAD);
const octokit = new Octokit({ auth: process.env.GH_TOKEN });
async function main() {
// Example: mirror issue to data-hub as JSON
const data = {
number: payload.number,
title: payload.title,
action: payload.action,
processedAt: new Date().toISOString()
};
const content = Buffer.from(JSON.stringify(data, null, 2)).toString(‘base64’);
await octokit.repos.createOrUpdateFileContents({
owner: ‘max-github-system’,
repo: ‘data-hub’,
path: `data/issues/${payload.number}.json`,
message: `chore: sync issue #${payload.number}`,
content
});
}
main().catch(err => {
console.error(err);
process.exit(1);
});
—
6. `ai-workflows` — AI‑powered pipelines
Goal: Scheduled or event‑driven AI tasks that read/write GitHub data.
Structure:
• .github/workflows/• summarize-issues.yml
• generate-content.yml
• scripts/• summarizeIssues.mjs
summarize-issues.yml:
name: Summarize Issues
on:
schedule:
– cron: “0 * * * *” # hourly
jobs:
summarize:
runs-on: ubuntu-latest
steps:
– uses: actions/checkout@v4
– uses: actions/setup-node@v4
with:
node-version: 20
– name: Install deps
run: npm ci || true
– name: Summarize
env:
GH_TOKEN: ${{ secrets.GH_PAT }}
AI_API_KEY: ${{ secrets.AI_API_KEY }}
run: node scripts/summarizeIssues.mjs
summarizeIssues.mjs (conceptual):
import { Octokit } from ‘@octokit/rest’;
const octokit = new Octokit({ auth: process.env.GH_TOKEN });
async function main() {
const { data: issues } = await octokit.issues.listForRepo({
owner: ‘max-github-system’,
repo: ‘issues-db’,
state: ‘open’
});
const text = issues.map(i => `#${i.number}: ${i.title}\n${i.body}`).join(‘\n\n’);
// Call AI API here with text (pseudo)
const summary = `Summary of ${issues.length} issues…`; // replace with real call
await octokit.repos.createOrUpdateFileContents({
owner: ‘max-github-system’,
repo: ‘data-hub’,
path: `data/summaries/issues-latest.md`,
message: ‘chore: update issues summary’,
content: Buffer.from(summary).toString(‘base64’)
});
}
main().catch(err => {
console.error(err);
process.exit(1);
});
—
7. `devops-pipeline` — Shared CI/CD
Goal: Central reusable workflows for tests, lint, build.
Structure:
• .github/workflows/• reusable-node-ci.yml
reusable-node-ci.yml:
name: Reusable Node CI
on:
workflow_call:
inputs:
node-version:
required: true
type: string
jobs:
ci:
runs-on: ubuntu-latest
steps:
– uses: actions/checkout@v4
– uses: actions/setup-node@v4
with:
node-version: ${{ inputs.node-version }}
– name: Install deps
run: npm ci
– name: Lint
run: npm run lint || echo “no lint script”
– name: Test
run: npm test || echo “no test script”
Usage in frontend-app (ci.yml):
name: CI
on:
pull_request:
jobs:
ci:
uses: max-github-system/devops-pipeline/.github/workflows/reusable-node-ci.yml@main with:
node-version: “20”
—
8. `org-templates` — Templates for fast cloning
Goal: One‑click creation of new repos with your standards.
Structure:
• template-frontend/
• template-automation/
• template-data/
Each template contains:
• Basic structure
• Example workflows
• README with conventions
Mark org-templates as a template repository in GitHub settings.
—
How this all behaves as a single system
• Frontend: frontend-app + frontend-docs serve UI and docs via Pages. • Data: data-hub holds structured JSON/YAML; issues-db holds live records. • Logic: backend-automation reacts to events and manipulates data across repos.
• AI: ai-workflows reads from issues-db/data-hub, writes summaries, content, insights. • Quality: devops-pipeline enforces consistent CI across all code repos.
• Scale: org-templates lets you spin up new modules that plug into the same ecosystem.
You can now literally run an entire “platform” with no infra beyond GitHub.
If you want, next natural layer is: define naming conventions + labels + branch strategy so the whole org feels like one coherent product.